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Multicomponent lattice Boltzmann method for fluids with a density contrast
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We present and verify a multicomponent lattice Boltzmann simulation scheme for two immiscible and
incompressible fluids with a large density contrast. Our method is constructed from a continuum approximation
description of a single inhomogeneous, and essentially incompressible, fluid. The equations that arise from this
analysis are mapped onto an established multicomponent lattice Boltzmann method. The approach avoids the
computational expense of a numerical solution of the fluid pressure field in a separate step. We present results
obtained with our model which validate the initial assumptions and verify correct static and dynamic operation
of the model up to a fluid density contrast ratio of more than 500. The paper concludes with an example that
illustrates the potential utility of the approach by modeling a gas bubble rising under gravity and breaking

through a free surface.
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I. INTRODUCTION

Many multicomponent flows are concerned with two or
more immiscible fluids which have a large relative density
difference. This requirement has hampered the adoption of
the otherwise promising multicomponent lattice Boltzmann
method for the simulation of such situations. A number of
authors have addressed this problem [1-6]. Inamuro et al. [1]
report simulations with density contrasts of up to 1000. This
is achieved by introducing a pressure correction derived
from solutions of an appropriate Poisson equation. Similar
density contrasts are achieved by (a) Lee and Lin [2] who
use careful discretization of the lattice Boltzmann (LB) equa-
tions, (b) Wagner and Pooley [3] who reduce the speed of
sound in a liquid-gas system, and (c) Zheng et al. [4] who
employ an interface-capturing scheme based on the Cahn-
Hilliard equation.

In this paper, we present an alternative LB scheme for
modeling the flow of two immiscible and incompressible flu-
ids that have a significant difference in density. The scheme
is based upon a continuum description of a hypothetical, in-
homogeneous fluid. It is computationally efficient and
avoids, for example, the computational expense of solving
for the fluid pressure field in an intermediate step as, for
example, in [1].

The important distinction between existing large-density-
difference LB methods [1,4] and the method reported here is
the fact that our method is direct, easy to implement, and
derives from continuum hydrodynamical principles alone;
accordingly it may be seen as the most appropriate tool in
large and very important classes of multicomponent flow cal-
culations, which need to be made in the continuum regime.

Among the challenges encountered in continuum applica-
tions of multicomponent flow are the contrasting magnitudes
of the interfacial tension parameter o, the length and time
scales, and the kinematic viscosity v. The relative size of
these parameters is, for our purposes, best expressed by the
dimensionless Weber number

2
we=2PYR. (1)
o

where R is the drop radius, p the density of the more dense
fluid, and U the local velocity. In demonstrating our method,
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we shall attempt realistic, representative parametrizations,
taking for our test bench example a breaching air bubble of a
few centimeters diameter, rising under gravity, in water,
characterized by We=0(1). In Sec. III C we consider in de-
tail the parametrization of this problem; however, it should
be stated at the outset that, to achieve so small a We, it was
necessary, given our computational resources, to reduce to 10
the density contrast for our key results of Figs. 6 and 7 be-
low: certainly other workers have achieved larger density
contrasts with different LB schemes, but at much larger We,
corresponding to much smaller surface tension parameters.
Lee et al. and Mukherjee ef al. achieve We=8000 [2,6] and
We=20 in [1]. Note also that, in the latter case, smaller We
numbers were associated with increased spurious velocities,
which are not a problem with the method presented here.
Moreover, a density contrast of 10 is not particularly prohibi-
tive, since the important physics of the problem (the momen-
tum transfer from the less dense fluid) will not be signifi-
cantly altered by using much larger density contrasts.

A. Overview of this paper

The key methodological elements of the technique pre-
sented here are presented as follows. (1) A single relaxation
time LB model due to Qian et al. [7] is summarized in Sec.
IT A. (2) The surface tension between the two fluids is intro-
duced using a scheme introduced in [8] and is explained in
Sec. II B. (3) The phase separation of the fluids is achieved
using a method based closely on the methods of d’Ortona
et al. [9] and Latva-Kokko and Rothman [10] as set out in
Sec. I C. (4) The method for introducing the effect of the
large density difference through additional forcing at the in-
terface is set out in Sec. III A. (5) The method of implement-
ing the density difference scheme within a LB format is set
out in Sec. III B. In order to achieve realistic parametriza-
tions of the method, it is also found to be necessary to in-
crease the stability of the LB scheme. This is achieved using
a modification to the LB scheme due to Brownlee et al[11].
Validating and illustrative results are given in Sec. IV and the
conclusions are set out in Sec. V.
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II. MULTICOMPONENT LATTICE BOLTZMANN
METHOD

A. Single-component LB scheme

We use the single-relaxation-time, LB model due to Qian
et al. [7]. The method is based upon the approximation of
Bhathangar, Gross, and Krook (BGK) [12] for the Boltz-
mann collision operator and is hence commonly referred to
as the lattice BGK (LBGK) method. A comprehensive review
of LB methods is given, for example, by Succi [13].

The LB method is based upon an evolution equation for a
discretized single-particle momentum distribution function
f:» to which a momentum source term ¢,;(r) may be added:

fir+ 8eit+ 8) = £(x,0) + o[£ (p, pu) - £,(x,0)] + Bi(r).
)

In the last equation, &, is the time step. The lattice on which
this scheme is implemented has spacing dx. The term ¢; has
the effect of impressing a force in the fluid by injecting mo-
mentum into the flow at each time step. The parameter w lies
in the range 0=w=2 and controls the fluid viscosity. It is
shown below that the source term ¢; may be used to produce
an interface between two immiscible fluids and also to intro-
duce the effect of the difference in density between these two
fluids.

The continuum hydrodynamic observables of density p
and velocity v emerge from moments of the single-particle
momentum distribution function f; and an appropriately cho-
sen equilibrium density ﬁio)(p,pv),

ple.)) = 2 fir.0) = 2 f%(p.pv), (3)

1 1
Vi) = 2 filene =2 o pve.  (4)

1

In the presence of a constant source term ¢;, a Chapman-
Enskog analysis [14] may be used to derive a weakly com-
pressible form of the incompressible Navier-Stokes equa-
tions with a body force. In particular, the choice

1
=t,—F-c
ky

o i (5)

inserts a uniform pressure gradient F into the Navier-Stokes
equations:

(a d ) AP (20vS.)+ F
ULt U T U, | == T+ —2pvS,p) + F.
Pl PP o, oxy, 7T gxy PPk

(6)

Here we have used the summation convention on repeated
subscripts, dp, represents a pressure fluctuation about a con-
stant mean level, and

1{0 J
Saﬁz_(&+_vg) @
2\ dxg  Ix,

is the symmetric velocity gradient (or strain rate) tensor. The
kinematic viscosity v is a simple function of the parameter
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. The constant k, and the link weights 7, are determined by
the particular choice of lattice [7]. Note that, by using lattice

isotropy properties, Eq. (5) may be inverted:

F=k2 dc;. (8)

B. Multicomponent LB scheme

In order to adapt this method to model a multicomponent
system, the momentum distribution function is specified in
terms of the individual densities of the two immiscible fluids,
designated red (R) and blue (B):

fi(r’t) =Ri(r7t) +Bi(r’t)7 (9)

with the nodal density of red and blue fluids defined as the
separately conserved partial densities:

R(r,)) = 2 Ry(r,1), B(r,)= >, B,r.0). (10)

We note that Egs. (3) and (4) remain valid for the sum fluid.
Thus, even in an interfacial region the combined red and blue
fluids define a fluid that evolves according to the LB evolu-
tion equation (2).

We define a phase field

R&ﬁ—B&ﬁ)

R(r,t) + B(r,?) (1)

p"(r,1) = (
where —1=p"(r)=1. Red and blue fluids mix in the LB
propagation step; we define mixed sites as lattice sites that
have both red and blue densities. The mixed sites form an
interfacial region between the two fluids.

In order to induce a surface tension, it is possible to apply
a force at the interface, F (r), which is defined in terms of
the gradient of p™(r) [8]. For an interface between two fluids
of equal density, a cross-interfacial pressure step proportional
only to the local curvature in the p" field, H, results from the
use of the fluid body force:

1
F(r)= Ea’H v, (12)

where o is the parameter controlling the strength of the sur-
face tension. The negative of the normalized color gradient
serves as the interface normal

VeV
[Vp"

A , (13)

and the interface curvature H is obtained in two dimensions
as the surface gradient,

on, Jn on, an
H=nxny(_x+_x> o (14)
dy  ox dy ax

where there is no summation over repeated indices. Neglect-
ing for simplicity the effects of spatial variation in the force
F [15,16], the required source term ¢; is obtained from
Eq. (5).
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C. Color segregation

The two fluids are segregated using the method of
d’Ortona et al. [9] and Latva-Kokko and Rothman [10]. This
is adopted because it is a simple and effective method for
minimizing the presence of spurious velocities at the inter-
face, a problem that besets many interface algorithms. In this
method, the postcollision segregation of the two fluids is
achieved using the algorithm

R 4 RB

Ri = mfl + ﬂmtp COS(gf— (9[)(:[, (15)
B RB

Bi=R+Bfi _'BR+Btp cos(6; - 6,)c;, (16)

in which (6~ 6)) is the angle between the interface normal fi
and the link direction. f; denotes the postcollision value of
the momentum density associated with link i. The segrega-
tion parameter 0= <1 controls the width of the interface
and it is found empirically that a choice of S~ 0.7 produces
an interface which is as narrow as possible consistent with
creating a very low level of spurious velocities.

III. LATTICE BOLTZMANN METHOD WITH DENSITY
DIFFERENCE FORCE

The physical effects of a difference in density between
two immiscible fluids, interacting at an interface, are cap-
tured by a fluid body force, the formulation of which we
discuss first. We then proceed to consider its implementation.
In this section we describe such a body force, then discuss its
implementation with a multicomponent LB fluid algorithm.

A. Formulation

In this section we develop the means to simulate two mu-
tually immiscible, incompressible fluids of very different
densities, separated by a continuum interface.

We model this target system by considering the hydrody-
namics equations that govern the flow of a single weakly
compressible fluid and capture the behavior of the two im-
miscible fluids by the inclusion of gradients in density and
viscosity close to the region of the interface between the two
fluids.

The hydrodynamic equations describing the single fluid
are the continuity equation

ap . Ipva) _

0, 17
ot ox (17)

o

and the Navier-Stokes equations for a compressible fluid [17]
Jv av,, J J Jv Jv 2 Jdv
p<_a +Uﬁ_> = - _p + _|:7](_a+ _é - _5lj_k>:|
at dxg dx, dxg dxg  dx, 3 T Ox;

+1(§@) Lo,

0x, \ ™ Oxy,

(18)

where, in the last equation, { is the bulk viscosity, Fz’“ is an
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external force, and p is the pressure. The density of the fluid,
p, we now write in the form

P = Ppo, (19)

where the quantity ¢ captures the change in density as one
moves through the interface from one fluid to the adjacent
fluid. ¢ is assumed to have significant spatial gradients only
at the boundary between the two fluids and to be constant in
the bulk of each fluid, with a value of either a (air) or w
(water), where a < ¢@=w. Hence the density p takes a value
between the density of the less dense (rare) component, p,
=py, and more dense component, p,,=wp,. The variation in
po 1s assumed small. This assumption is found to be well
justified in simulations, especially at large w values (see Fig.
2, below).

We consider a volume element advecting in the model
fluid at the interface. Since the interface is stable, and the
fluid is assumed to be essentially incompressible, the mass of
this volume element is conserved. Consequently, the total
material derivative of the density is zero everywhere in the
model fluid:

J J
—p+va—p=0.

20
ot ax,, (20)

Therefore, from the continuity equation (17), it follows that

Jdv
— =0, 2D
ox,
and the Navier-Stokes equation is now simplified:
dv dv 1% d Jdv dv
p(—“+vﬁ—a) P _{,7<_a + _/j)} P
at dxg dx, Odxg dxg  dx,
(22)

Following the above arguments on the introduction of sur-
face tension, we choose an external force

otl_dp

Fext —
“ Pa— Pw 5)(?0(

(23)

which ensures that the cumulative forcing between the two
components,

f —dx,=0oH, (24)
a Pw = Pa axa

inserts Laplace law surface tension effects. The integral
above is taken across the interface, between points corre-
sponding to the bulk fluid components, o is the surface ten-
sion coefficient, and H is a path-averaged interfacial curva-
ture defined in Eq. (14). With this choice of interface force,
the Navier-Stokes equation assumes an essentially incom-
pressible form:

(&va &va> adp 9 <ava a_v§>
p\—— tvg |=——T 4+ | nl T+
ot dxg dx, dxg dxg  dx,
oH o
P (25)
pw_paaxa
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We assume that flow velocities are everywhere small
compared to the appropriate velocity of sound. Thus the
sound velocity of each separated component (gas and liquid
hereafter) is very large and further the sound velocities of the
two components are approximately equal. We suppose an
equation of state for our hypothetical fluid to be of the form

p=po+cse(po—po)s (26)

where p, is a constant throughout the fluid and Jpy=(py
—po) is the fluctuation in the density p, from the average
density p,. We note that, at steady state and in the absence of
a surface tension perturbation, dp, is zero. Accordingly, in
this case, there would be no pressure drop across the inter-
face. Proceeding, we further suppose that

n=vp=vep. (27)

With substitutions from the last three equations, the Navier-
Stokes equation (25) finally takes the form

(0% ava> I o
— +vg |=—TcC
PO\ "t T B g ) T i,

J
+—2povS,p) + F,. 28
axﬁ( PoV aﬁ’) « (28)

Equation (28) is precisely the equation that is recovered
using the LB algorithm, defined above for a lattice fluid of
kinematic viscosity

1(2 o’
v=—|—=-1|—/, (29)
6\w 5,
provided an effective force
d1n H o
Fo= gt s 7220 (30)
&X,B Pw = Pa (?xa

is introduced. This force acts only at the interface and cap-
tures the static and dynamic effects of both the surfaces ten-
sion and the difference in density between the two fluids. In
Eq. (30) we have defined

dv Jv
Po a'H) Oap+ vpo(—a+—§>.
Pw ~ Pa axﬁ’ axa

Top= (— c?ﬁpo +
(31)

Recall that the variation in p, is small relative to that in ¢;
consequently the second term in the right-hand side of Eq.
(30) is negligible relative to the isotropic contribution to &,z
defined above.

Henceforth, we designate 7, an effective stress tensor. In
the right-hand side of Eq. (31), the isotropic component is
responsible for hydrostatic inertial and interfacial tension ef-
fects at the interface. The term 2vp,S,s generates a shear-
dependent force, again to adjust for inertia as the fluid den-
sity changes through the interface. Note that the densities of
the separated components, p, and p,,, are constants.

B. Implementation with the LB method

In order to extend the multicomponent LB interface
method outlined in Sec. II to the case of separated compo-
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nents with different densities, we write our component den-
sity function ¢ in terms of the phase field p" [see Eq. (11)] as
follows:

o= 310+ pp+ (1= pp,]. (32)
Po

Then the derivative of the logarithm of ¢ may be expressed
through Vp", the color gradient:

dIn ¢ _ Pw ~ Pa M
axg (Pt pa) + (py = pa)p" dxg
-1 ap"
-— o, (33)
(y+ 1)+ (y=1)p" dxg
where the dimensionless density contrast parameter
y= P (34)
Pa

Following the method of [8], Egs. (33) and (31) are now
used to define an appropriate macroscopic force; the corre-
sponding source term ¢;(r) for the LBGK evolution equation
(2) is, again neglecting spatial variation, obtained from
Eq. (5).

C. Parametrization of LB implementation

When parametrizing our LB simulation method for a
complex flow application, issues arise relating to the choice
of (i) interfacial tension « and (ii) density contrast 7.

Let us consider the interfacial tension parameter «. Fluid
in the immersed boundary, or interface, is described by Eq.
(28). Using Egs. (30) and (31) we approximate the external
force term F, in Eq. (28) with its dominant term to obtain

v, v, 1 9

2
Tyt an — 22, 35
Jdt B(?XB po(‘).xa s %P0 ( )

1 9
2y

Po oXp
oH 0
+ —1n ¢. (36)
Pw ~ Pa axa

Now, suppose for simplicity that the lattice density py=p,.
Divide Eq. (35) by the fraction &x/&; and invoke the defini-
tion of lattice viscosity [Eq. (29)] to obtain the following
description in which all velocities and distances are ex-
pressed in lattice units:

v 1 9
== — ¢ 8py (37)

ES
xa

ogH" 9
—In ¢, (38)
Pw = Pa axa

+

where the physical interfacial tension o and the lattice sur-
face tension parameter ¢ are related by
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&
f=o—=. 39
o =0 (39)
On eliminating the time step &, between Egs. (39) and (29),
we obtain for the lattice surface tension parameter

%
g =0

&(2/w—1)2

3617 (40)

Clearly the parameter a* controls the amplitude of the per-
turbative external force term ¢;(r) in lattice evolution equa-
tion (2); it must therefore be restricted in value. Accordingly,
for target systems with large interfacial tension and small
kinematic viscosity (large density) it is necessary to use
small values of lattice spacing dx, which clearly increases
computational cost, or values of w— 2, which undermines
stability.

Let us now consider the interfacial density contrast pa-
rameter y. Take a point in the center of the interface, char-
acterized by the phase field parameter p"¥=0. For this value
of pN , for given v, the effective force weight, defined in Eq.
(33), is a maximum. As vy increases, this weight increases (to
its maximum value of unity) which increases the size of the
effective force, undermining stability in regions where the
strain rate is large [see the definition of effective stress in Eq.
(31)]. Only by using small values of lattice spacing &x may
the effective force contribution be regulated, with clear con-
sequences for simulation efficiency.

In the application of our method to complex flow, in the
next section, we consider a surface-breaching air bubble, di-
ameter 1 cm, in water. The appropriate interfacial tension is
very large and presents a challenge to our method. To simu-
late this system, we took

27l o=7X 1072 Tm2, (41)

v=v,~1,=10° m
choosing to initialize the undeformed bubble to a radius of 1
cm, resolved on a fairly course mesh of 20 lattice units, so
that Sx=5X10"* m. This choice reflects the need to main-
tain a reasonable time step (see below).

As we have remarked, to limit the value of the lattice
interfacial tension parameter ¢”, evaluated from Eq. (40), it
was necessary to select a value of w=1.99. The correspond-
ing time step is then found to be §=2.1 X107 [from Eq.
(29); note the quadratic dependence of &, on x].

At our selected resolution, the shear rates developed at the
cap edges of the breaching bubble (see Fig. 6) were observed
to be large. In fact, it could be argued that this intense, local
shear is itself a result of the shape assumed by the bubble and
hence of the large interfacial tension—at smaller interfacial
tension the local strains will relax as they deform the inter-
face.

A key advantage of our method inherited from our origi-
nal scheme, detailed in Sec. II B, is an ability to reach larger,
controllable, interfacial tensions (consistent with smaller We
and characteristic of many practical situations) which re-
quires larger surface-tension-inducing forces or, equivalently,
LB evolution equation source terms ¢;(r) in Eq. (2). This, in
turn, increases the associated interfacial microcurrent. While
Inamuro et al. [1] report a prohibitive increase in these spu-
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rious velocities for their multiphase LB simulations, for
We=20, we were able to achieve a We=3 (evaluated from
the bubble velocity just before it breaches the free surface)
with small microcurrent activity, as the results of Figs. 6 and
7 demonstrate (Lee et al. and Mukherjee er al. achieve We
=8000 [2,6] and We =20 in [1]).

From the considerations set out above, it was therefore
necessary to restrict the density contrast, the data of Fig. 6
corresponding to y=10. This restriction may be easily over-
come and larger density contrasts for this applications could
be achieved with our method, most straightforwardly by in-
creasing the spatial resolution (decreasing the values of &x
and §,). However, it is important to note that, for a simulation
of equivalent duration, the computational expense attending
a twofold increase in simulation resolution is therefore 2*.
Furthermore, a density contrast of 10 is not particularly pro-
hibitive in complex flow; the momentum transfer from the
less dense fluid, once separated by an order of magnitude,
may not be significantly altered by using a much larger den-
sity contrast.

D. Stabilization

The LB method is known to suffer instability in the form
of local blowups and spurious oscillations when used to
model high-Reynolds-number flow, or (as is the case here)
with w close to the limiting value of 2. In the application of
our method to systems with realistic surface tensions, density
differences, and drop Reynolds number, it was found neces-
sary to stabilize the basic LB scheme, using the approach of
Brownlee ef al.[11].

The LB stabilization of Brownlee et al. is based upon
thermodynamic considerations, adds no artificial dissipation,
preserves the accuracy of the scheme and, not least, is algo-
rithmically very simple to apply. By considering the LB evo-
lution as a free flight (propagation) followed by a relaxation
(collision) toward what is termed the quasiequilibrium mani-
fold (of distribution functions f;) Brownlee et al. have shown
that the use of coupled steps, described below, considerably
increases stability.

In practice, all that is necessary to implement the coupled-
steps approach of Brownlee et al. to LB stabilization is to set
the relaxation parameter w=1 in Eq. (2), on alternate time
steps, only on lattice nodes where a defined nonequilibrium
entropy increases above a certain, fixed amount [11]. Clearly
this is very simple to achieve. Using the extension of Brown-
lee et al., the essential effect of which is to promote an evo-
lution more closely adherent to the quasiequilibrium mani-
fold (on which entropy is a maximum), our method achieved
parametrizations typical of the real applications represented
in Fig. 7.

IV. MODEL VALIDATION

The contribution of the term associated with J,4 in the
effective stress tensor 7,5 of Eq. (31) is apparent in static
simulations. The static simulations represented in Figs. 1 and
2 relate to the steady state of an infinite array of circular
drops of denser lattice fluid. The drops’ initial radius was 16
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Excess Pressure (lu)
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0.00002

0 . :
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X (lu)

FIG. 1. Excess pressure profiles. Excess pressure dp, (measured
in lattice units) is plotted with distance x (measured in lattice units)
across a section of a static two-dimensional (2D) drop, initial radius
20 lattice units, for density contrasts (@ay/ @min) = 10,50, 100,500.
The corresponding density profiles are shown in Fig. 2.

lattice units and the data were obtained from a 70 X 70 lattice
with periodic boundary conditions.

Note that, in both Figs. 1 and 2, the associated error bars
are too small to resolve on the figures. The kinematic viscos-
ity contrast between the rare and dense fluids is unity and the
LB collision parameter w=1.

Figure 1 shows the variation of the excess pressure dp,
computed from Eq. (26), with distance x along a continued
diameter of equilibrated drops of initial radius 20 lattice
units. The results are presented for a range of density con-
trast parameter y=5,10,50, 100,500 but with identical inter-
facial tension parameter a. The corresponding density varia-
tion is shown in Fig. 2. Note that, as the density contrast
parameter 7 increases, the lattice density p, shows reduced
variation.

Figure 3 verifies Laplace law behavior. Note that this fig-
ure has a vertical axis which does not contain the origin. It

2.00006 ‘ ‘
10—
I 50 —o— |
2.00005 S
. 2.00004 f 500 ——
=]
> 200003 | ]
]
3 200002 | ]
s 2
(0]
S 200001 | ]
£
1.99999 T "
1.99998 ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70

X (lu)

FIG. 2. Lattice density profiles (measured in lattice units) for an
initial, uniform lattice density 2.0. Steady state lattice density py is
plotted with distance x (measured in lattice units) across a section of
a static 2D drop, initial radius 20 lattice units, for density contrast
parameter (@pax/ @min) = 10,50, 100,500. The corresponding excess
pressure profiles are shown in Fig. 1.
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0.00168 ‘
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Density Contrast

FIG. 3. Laplace law behavior. Pressure step (measured in lattice
units), multiplied by initial drop radius (the effective interfacial ten-
sion), is plotted on the ordinate against density contrast parameter y
for the range of drop initial radii identified in the figure inset. The
solid line indicates the set value of interfacial tension parameter .

plots the measured pressure step, multiplied by drop radius
(the effective interfacial tension), against the density contrast
parameter 7y for a range of initial drop radii R. The solid
horizontal line indicates the set value of interfacial tension a.
As y—1 we recover the expected behavior of our unmodi-
fied scheme [8]. The small increase (<3%) observed in mea-
sured surface tension for intermediate values of y we tenta-
tively associate with the contribution to the interfacial force
from outlying regions of the interface, characterized by |p"|
=< 1. The relative importance of this contribution diminishes
as 7y continues to increase [see Eq. (33), denominator].

The contribution of the term involving the velocity gradi-
ents in the effective tensor o,z of Eq. (31) is exposed only in
dynamic simulations. Consider a planar rare/dense interface
subject to a shear flow directed parallel to the interface. If the
separated fluids have similar kinematic viscosity, the shear
viscosity must change at the interface and the usual dynamic
boundary conditions [17] therefore imply a change in the
shear rate at the interface. In Figs. 4 and 5 the fluid interface
occupies the region 28 <y < 32: the rare and dense fluids
occupy the regions y >32 and y <28, respectively.

Figure 4 shows the variation of the cross-interfacial phase
field, the flow velocity, and the force component F', parallel

o) -

5 R
5 1 N X

i \\ Vx

W< 051 \\

= |

2 0 \

= |

> \

5 -05 ¢ \

2

S \

>X _1 L N ]
~-

o

FIG. 4. Shear flow for density ratio (1000/1.3). Normalized
cross-interfacial phase field p", force F,, and velocity v,, after Eq.
(30), as a function of distance (measured in lattice units).
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F, (arb. units)

pN, v, (arb. units),
o
(&)

FIG. 5. Shear flow for density ratio 2. Normalized cross-
interfacial phase field p", force F,, and velocity v,, after Eq. (30),
as a function of distance (measured in lattice units).

to the flow velocity. These results are for fluids of large vis-
cosity contrast and the quantities are plotted as functions of
distance, measured perpendicular to the interface. Figure 5
shows similar data for an interface between fluids of smaller
viscosity contrast. Comparing Figs. 4 and 5, we note that, for
large density contrasts, the lighter fluid (on the right) is pre-
vented from dragging along the insulated, heavier fluid (on
the left).

Figure 6 shows phase field data at equal time intervals
from a two-dimensional simulation of spatial resolution
450X 450 lattice units, in which a bubble of less dense fluid
rises under gravity and breaks the surface of the denser fluid.
The surface tension is that between air and water and the
initial radius of the droplet is 0.5 cm. Although the density
contrast in this simulation is only 10, the correct gravita-
tional forcing for air and water was used. The data of Fig. 6
show the formation, retraction, and collapse of an isolated
cap under inertial, viscous, gravitational, and surface tension
forces: its interpretation is discussed below. An initial release
depth of the bubble, necessary to observe the formation of a
jetlike structure (final three images), rather than satellite
drops, was determined, by trial and error, to be 1.5 cm. Fig-
ure 7 shows the flow field associated with image 6 in Fig. 6.
The maximum velocity vector near the core of the vortices
has a value of approximately 0.145 m s,

Consider the droplike features in Fig. 6 frames 12-15. It
is known that surface instabilities cause water sheets in air to
collapse into drops. Furthermore, Fig. 6 is in qualitative

il i Bl BSl B B
e - v [ ] ' |
FIG. 6. Phase field, sampled at equal time intervals, from the

simulation of an air bubble (white), initial diameter 1 cm, rising

under gravity in water (black fluid). The initial bubble release depth
was 1.5 cm.
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FIG. 7. Flow field associated with image 3 in Fig. 6.

agreement with the experimental data of Woodcock et al.
[18], who obtained high-speed photographs of the fragments
produced by bubbles of air, of a few millimeters diameter,
bursting at an air-water interface. The results of Woodcock et
al. show a jet of water projected vertically into the air and, in
addition, some much smaller satellite droplets. However, the
small drop structures (first evident in Fig. 6, frame 12), de-
riving from what is a two-dimensional simulation, must be
interpreted with caution, as follows.

Close analysis of simulation flow and phase fields and the
adequate resolution of the simulation (the drop structures in
frame 12 have an approximate average radius of 18 lattice
spacings) mean that the drop features, which form at the
retracting cap tips, are not due to any numerical instability in
our method. Noting that the system simulated in Figs. 6 and
7 has a central, vertical axis of symmetry, take the detaching
cap tip in frame 12 of Fig. 6. There is positive interfacial
curvature over the entire upper surface of this cap, which is,
furthermore, large in the region of the cap tip. Beneath the
cap, the surface curvature is positive only in the immediate
tip region but it (surface curvature) rapidly becomes negative
as one moves beneath the drop, toward the central axis of
symmetry. Accordingly, in this two-dimensional simulation,
interfacial tension forces tend strongly (i) to retract the drop
tip locally, draining the cap fluid (water) into the nearby cap
region, and (ii) to expand the underside of the cap—strongly
close to the tip. These surface motions cause relatively rapid
formation of drops in the cap tip region. Once formed, these
drops cannot drain in the third dimension. It follows that
drops formed at the retracting cap tip are topologically (but
artificially) stabilized in our simulations.

While our method could easily be adapted to simulate a
problem with axial symmetry (such as that in Fig. 6) with
two-dimensional computational efficiency the collapse of the
bubble cap, for this application, must be treated as a more
resource-intensive, fully three-dimensional problem. How-
ever, such a detailed three-dimensional application of our
method to the breaching bubble system would appear to be
worth the expense.

V. CONCLUSION

We have presented a multicomponent LB simulation
methodology designed for completely immiscible fluids with

036702-7



LISHCHUK, HALLIDAY, AND CARE

large density contrast. Our method is stable over a large
range of density contrasts, efficient, easy to implement, and,
above all, local; it does not require, for example, an interme-
diate solution of the pressure field. The separated fluids’ den-
sity difference is imposed on a relatively uniform LB fluid by
introducing effective, shear-dependent forces acting only in
the region of the interface; these forces compensate the rela-
tive fluid motion for inertial effects; see Figs. 4 and 5.

PHYSICAL REVIEW E 77, 036702 (2008)

The paper presents a set of results from simulations
implemented in two spatial dimensions which demonstrate
the basic principles of the method and the recovery of the
correct hydrostatic (see Figs. 1-3) as well as elementary hy-
drodynamic (see Figs. 4 and 5) behavior. We also present
results corresponding to more complex multicomponent
flow: these serve to demonstrate the utility of the method and
its very real potential in continuum applications.
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